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A procedure using the "nite strip element method in combination with a spring system is
proposed to treat the free vibration analysis of plates on elastic intermediate supports.
Results indicate that the spring system can successfully simulate elastic intermediate
supports such as point supports, line supports, local uniformly distributed supports and
mixed edge supports. From the results, it is also evident that support sti!ness and support
areas have signi"cant in#uence on the free vibration response of plates on line supports and
local uniformly distributed supports.
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1. INTRODUCTION

Rectangular plates on intermediate supports "nd use in many engineering structures and
other areas of practical interest, such as slabs on columns, printed circuit boards or solar
panels supported at a few points. With its potential applications, the vibration of point
supported plates and plates with complex boundary conditions have received considerable
attention from researchers. Venkateswara Rao et al. [1, 2] analyzed the vibration of
rectangular plates with mixed boundary conditions and with point supports. Raju and
Amba-Rao [3] considered the free vibration of a square plate symmetrically supported at
four points on the diagonals. Narita [4}6] presented a series solution for the vibration
analysis of rectangular plates with complex mixed conditions, point supports and cantilever
plates with point constraints. Kersterns et al. [7] treated rectangular plates with point
supports, while Bhat [8] used the characteristic orthogonal polynomial in the
Rayleigh}Ritz method to analyze the vibration of rectangular plates with point and line
supports. Gorman [9}11] presented the solutions to rectangular plates with symmetrically
distributed point supports and uniform elastic edge supports. Bapat et al. [12}17] discuss
the vibration characteristics of rectangular plates having various types of supports such as
a single point support, arbitrary multiple point supports within the plate and at the edges.
Kim and Dickinson [18] investigated the #exural vibration of rectangular plates with point
supports in detail. Lee and Lee [19] investigated rectangular plates on elastic point
supports and discussed the e!ect of the support sti!ness. The most general study in this
particular area is that by Fan and Cheung [20], in which they used the spline strip element
method to analyze plates with complex boundary conditions and point supports.

In this paper, the "nite strip element method combined with a spring system is employed
to treat the free vibration analysis of plates on elastic intermediate supports. The elastic
sOn leave from Nanchang University, P.R. China.
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intermediate supports are modelled by a spring system which can simulate point supports,
line supports, local uniformly distributed (or patch) supports and mixed complex boundary
conditions. Results are compared with those from the literature. The e!ects of elastic
support sti!ness and support area on the vibration response are discussed. Finally, this
method is applied to analyze the free vibration of a highway bridge with column supports.

2. FINITE STRIP ELEMENT AND GOVERNING EQUATION

Considering a "nite strip element, the de#ection of the element can be expressed as

w (x, y, t)"
M
+

m/1

[N]
m

MdN
m
. (1)

For the low order strip element (LO2) [21, 22], the following expressions hold:

MdN
m
"Mw

im
(t), h

im
(t), w

jm
(t), h

jm
(t)NT, [N]

m
"[N

1m
, N

2m
, N

3m
, N

4m
], (2)

N
1m

"(1!3m2#2m3)>
m
(y), N

2m
"em (1!2m#m2)>

m
(y),

N
3m

"(3m2#2m3)>
m
(y), N

4m
"e (!m2#m3)>

m
(y),

m"
x!x

i
x
j
!x

i

, e"x
j
!x

i
.

Here, x
i
and x

j
denote the plate edges and >
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end conditions of the beam. For a single span >
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In the above equation, A
i
and a

m
are determined from the boundary conditions at the

discontinuous ends of the strip and b is the length of the element. For example, if the plate
strip is simply supported at both ends, the function takes the simpler form
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From the displacement function, the curvatures and bending moments can be easily
obtained. The strain vector of curvatures and the stress vector of moments are then given by
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In the above equation [D] is the constitutive matrix, h the plate thickness and E
x
, E
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, k
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G
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are the elastic constants of the orthotropic plate.
In order to apply the Lagrangian equation to the plate system, the total energy of the

plate is required. This will include the strain energy of the plate, the strain energy of the
elastic foundation, the potential energy of the load and the kinetic energy of the mass
system. The strain energy of the plate strip can be expressed as
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Three types of spring systems can be considered:

k
f
: spring sti!ness for the displacement (w)

k
x
: spring sti!ness for the rotation about the y-axis (h

x
"Lw/Lx)

k
y
: spring sti!ness for the rotation about the x-axis (h

y
"Lw/Ly).

The strain energy of the elastic foundation, consisting of these springs, can then be expressed
as
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Considering only transverse loads, the potential energy can be expressed as
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In the above equation, q is the distributed load and Q
m

is the load vector for the harmonic m.
The kinetic energy of the strip can be expressed as
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where o is the plate density. The total energy of the structure is obtained by adding all the
above contributions and is given by
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Using the Lagrangian equation on the entire plate system, the governing (dynamic)
equation of the structure can be formulated as
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When free vibration is treated, the load is set to zero and the de#ection can be expressed

as
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Then the dynamic equation (15) reduces to the eigenvalue problem:
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where u is the natural frequency in radians and u the phase.

3. MODELS OF INTERMEDIATE SUPPORTS

Di!erent types of intermediate supports can be simulated by appropriate modelling of
the spring system. Elastic intermediate supports can be placed within the interior of the
plate or at its edges. When line intermediate supports are placed at the edges of the plate,
mixed complex boundary conditions can be simulated.

3.1. LOCAL UNIFORMLY DISTRIBUTED ELASTIC SUPPORTS

In order to treat localized uniform elastic supports, the spring system is modelled as
having uniform sti!ness within the support area. For example, if the elastic support area is
a rectangular patch within x
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where H(x) is the Heaviside unit function given by
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3.2. ELASTIC LINE SUPPORTS AND POINT SUPPORTS

Line supports and point supports are common in several types of plate structures.
Supports parallel to both edges of the rectangular plate can be treated, with uniformly
distributed sti!ness along the length of the supports, parallel to the x- and y-axes. They can
be represented as follows:
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where d(x) is the Dirac Delta function.

3.3. STIFFNESS OF COLUMN (PATCH) SUPPORTS

When plates supported by elastic columns are considered, it is usual to treat the columns
as clamped at one end and #exible at the point of attachment to the plate. For a column
support, shown in Figure 1, with height H, area of cross-section A"b
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Figure 1. Column sti!ness and section.
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When the column is treated as a distributed (or patch) support, it is assumed to have only
a mean axial sti!ness and no rotational sti!ness. This type of support is relevant in certain
bridge decks where neoprene (synthetic rubber-based material) pads are used between the
deck and the piers. If the point support model is adopted, the column will have at its end an
axial sti!ness and rotational sti!ness about the two axes. That is:

Distributed (or patch) support:
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The use of elastic point supports with rotational sti!ness k
x

and k
y

is illustrated in the
example treated in section 6. For a column support, k

f
"E

c
A/H is termed the total sti!ness

for the distributed support or the point support in the ensuing discussion.

4. VALIDATION OF PROCEDURE

Plates with mixed boundary conditions or inner point supports have been treated by
many researchers. In order to validate the procedure, a square plate with mixed boundary
conditions or a centre point support, as shown in Figure 2 is considered. The plate
structures in Figures 2(a)}2(c) have a mix of simple and "xed boundary conditions at the
edges, while the plate structure in Figure 2(d) is simply supported along all four edges and
has a central point support as well. The spring sti!ness is set to the high value of
1015 kN/m2 to simulate a rigid line boundary condition, 1015 kN/m to simulate a rigid
point boundary condition, and the Poisson ratio is set to 1/3. The results for the "rst three

frequencies are shown in Table 1, with the frequency parameters de"ned as j"uB2Joh/D.
Convergence of the results has been ensured and the converged results in Table 1 have been
obtained by using 10 "nite strip elements and 25 terms of the series parallel to the mixed
boundary edge.

From the results in Table 1, it can be seen that the present results compare well with those
from others. In the case of the model with the elastic point support at the centre, the present
results cannot be compared directly with those in reference [19], as unsymmetrical modes
are absent in the results of Lee and Lee [19]. Hence, only the symmetric modes can be



Figure 2. Square plates with mixed boundary conditions and centre point support.

TABLE 1

Natural frequency parameters of square plates with mixed boundary conditions and centre
point support

Frequency parameters

Plates References j
1

j
2

j
3

Figure 2(a) Venkateswara Rao et al. [1] 22)96
Narita [4] 22)63 50)04 55)95
Fan and Cheung [20] 22)73 50)15 56)23
Present 22)81 50)26 56)36

Figure 2(b) Venkateswara Rao et al. [1] 28)62
Narita [4] 22)44 53)49 67)85
Fan and Cheung [20] 28)65 54)00 68)58
Present 28)67 54)09 68)54

Figure 2(c) Fan and Cheung [20] 23)54 51)43 58)36
Present 23)55 51)43 58)33

Figure 2(d) Venkateswara Rao et al. [1] 52)62
Lee and Lee [19] 53)09
Kim and Dickinson [18] 49)35s 53)17 78)96
Fan and Cheung [20] 49)35s 52)78 78)96
Present 49)35s 52)75 78)96

sTwo kinds of mode shapes.
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compared. The "rst mode in the present case being unsymmetrical, the frequency of the
second mode (which is symmetric) is compared with the frequency of the "rst mode in
reference [19], and the results are seen to match well. Hence, it may be concluded that the
spring system can successfully simulate the complex mixed boundary conditions and the
inner point supports}either rigid or elastic.

5. PLATES ON LINE AND LOCALLY DISTRIBUTED ELASTIC SUPPORTS

Though line and locally distributed elastic supports are also common types of support in
engineering structures, they have not received much attention from researchers. In the
present work, plates on elastic line supports and locally distributed rectangular supports are
considered. The support sti!ness and support length or area are taken as parameters in the
study. At "rst, a rectangular plate with the two shorter edges simply supported and having
two line supports along the middle line parallel to the shorter edges, as shown in Figure 3(a),
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is considered. A square plate simply supported along two opposite edges and having
a central patch support, as shown in Figure 3(b), is treated next. The other sides of these two
plate structures are free. Material properties for both these cases are the same and are given
by: E"31 GPa, k"0)25, o"2500 kg/m3, where E, k, and o are Young's modulus, the
Poisson ratio and the mass density respectively. The plate dimensions are: B"10 m,
¸"20 m, h"0)3 m for the line-supported plate, and B"¸"10 m, h"0)3 m for the
square plate. The plate is divided into 10 "nite strip elements and 25 terms of the series,
parallel to the free edges, are taken into account. Rotational sti!ness is not considered in
these examples.

The "rst three natural frequency parameters are presented in Tables 2 and 3 for the plate
with elastic line supports and for the plate on the elastic support at the plate centre
respectively. Unfortunately, the authors have not come across any similar work in the
literature for comparing results. In order to investigate the e!ect of support (length or) area
on the natural frequencies, the total sti!ness of the support is keep constant. From Table 2,
it can be seen that the support sti!ness does a!ect the natural frequency. When the support
sti!ness is small, di!erent support lengths yield di!erent frequencies, but when the sti!ness
and support length increase, the plate behaviour resembles that of a continuous plate. For
the square plate with a central support, it can be seen from Table 3 that both support
TABLE 2

Natural frequency parameters of plate on line elastic supports with di+erent support sti+ness
and support dimensions

Support Support Frequency parameters
dimension sti!ness

b/B k
f

(kN/m2) j
1

j
2

j
3

0)1 1)0]107 5)46199 9)71072 10)47248
1)0]108 9)71072 10)37520 16)49109
1)0]109 9)71072 14)66484 16)49108
1)0]1010 9)71072 16)49108 16)89209

0)2 1)0]107 7)13920 9)71072 11)94123
1)0]108 9)71072 13)53014 16)49109
1)0]109 9)71072 16)49109 21)80026
1)0]1010 9)71072 16)49109 29)24047

0)5 1)0]107 9)71072 10)49049 12)85587
1)0]108 9)71072 16)49109 19)53419
1)0]109 9)71072 16)49109 37)17847
1)0]1010 9)71072 16)49109 37)17847

Figure 3. Plates with line and local distributed supports.



TABLE 3

Natural frequency parameters of plate on local distributed elastic support at the centre point
with di+erent support sti+nesses and support areas

Total Distributed Frequency parameter
sti!ness area

k
f

(kN/m) A (m2) j
1

j
2

j
3

107 Point 10)86777 16)49106 37)76607
0)5]0)5 10)86767 16)49336 37)76220
1)0]1)0 10)86551 16)50018 37)74962
2)0]2)0 10)48820 16)52611 37)69785

108 Point 16)01589 16)49106 39)12869
0)5]0)5 16)07790 16)51379 39)15430
1)0]1)0 16)18525 16)58025 39)22887
2)0]2)0 16)32791 16)82842 39.49974

109 Point 16)49112 21)01836 39)12869
0)5]0)5 16)70649 21)29933 39)37427
1)0]1)0 17)27542 21)73815 40)02445
2)0]2)0 18)97154 22)47696 41)99695

1010 Point 16)49112 21)98679 39)12869
0)5]0)5 17)96738 22)69499 40)86395
1)0]1)0 20)20092 23)25170 43)56065
2)0]2)0 23)47683 24)42372 47)91951
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sti!ness and support area have an e!ect on the natural frequencies, with the sti!ness having
a greater in#uence. When the sti!ness is relatively small, the support area a!ects the
frequencies slightly, but when it is greater that 109, the natural frequencies are quite di!erent
for di!erent support areas. This means that for this range of support sti!ness, locally
distributed supports cannot be replaced by point supports, but the true support area should
be taken into account.

6. EFFECT OF (CENTRAL) COLUMN STIFFNESS

In order to investigate the e!ects of di!erent types of support models and support areas,
the square plate with four simply supported edges and a column support at the centre is
considered, as shown in Figure 2(d). As mentioned in section 4, this plate structure had
attracted the attention of many researchers who treated the column as either a rigid point
support or an elastic point support. Herein the column is modelled as having four di!erent
types of support conditions and the e!ect of this on the free vibration characteristics is
investigated. The four types of column support are: rigid point support, elastic point
support without rotational sti!ness (type A), elastic point support with rotational sti!ness
(type B) and uniformly distributed support (type C). In the numerical analysis, the
dimensions and material properties of the plate are as follows: B"10 m, h"0)3 m,
E"31 GPa, k"1/3, o"2500 kg/m3. The property of column support is given by
E
c
/H"5)0]109N/m3 which is typical for a concrete column and three di!erent column

sections are considered.
The "rst "ve natural frequency parameters are shown in Table 4, obtained by using 10

elements and 25 terms of the series, which ensured convergence. Generally, a rectangular
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plate has two axes of symmetry parallel to the edges. In the following discussion, symmetry
and asymmetry of the modes of vibration are referred with respect to either set of axes.
From this table, it can be seen that the support (model) type and column area have
signi"cant e!ects on the natural frequencies and mode shapes. When the column section is
small (A"0)5]0)5m2), elastic point support models yield a symmetric}symmetric
fundamental mode shape, while the second and third mode shapes are
symmetric}asymmetric. The distributed support model, on the other hand, gives results
which are quite di!erent. Here, the "rst and second mode shapes are symmetric}asymmetric
and the third mode is symmetric}symmetric. For larger areas of cross-section of the column
(A"0)8]0)8 and 1)0]1)0 m2), the "rst and second mode shapes are
symmetric}asymmetric when the central support is modelled as a point support without
rotational sti!ness or as a distributed support. At these larger column areas when the
support is modelled as a point support having rotational sti!ness, the fundamental mode is
symmetric}symmetric while the second and third modes are symmetric}asymmetric.
Table 4 also shows that the rotational sti!ness and column sectional area (and hence
axial sti!ness) have signi"cant e!ects on the natural frequencies and associated
mode shapes. When the column sectional area increases, the values of frequency increase,
with the frequencies obtained from distributed elastic support model increasing more
rapidly than those obtained from the other models. This means that the distributed model is
more rigid than the others. An interesting feature is that both the models with a point
support (either with or without rotational sti!ness) give the same fourth and "fth
frequencies and mode shapes. It seems that the rotational sti!ness has no e!ect on these two
mode shapes: asymmetric}asymmetric (fourth mode) and symmetric}symmetric ("fth
TABLE 4

Natural frequency parameters of a square plates with four simply supported edges and
supported by a column at the centre point

Frequency parameters
Column Support
section model j

1
j
2

j
3

j
4

j
5

0)5]0)5 A 46)872s 49)348t 49)351t 78)959A 98)711s

B 46)872s 50)865t 50)955t 78)959A 98)711s

C 49)842t 49)853t 50)926s 78)962A 102)715s

0)8]0)8 A 49)348t 49)351t 50)171s 78)959A 98)711s

B 50)180s 53)171t 53)225t 78)959A 98)711s

C 52)046t 52)146t 58)253s 79)002A 108)265s

1)0]1)0 A 49)348t 49)351t 51)033s 78)959A 98)711s

B 51)033s 53)908t 54)087t 78)959A 98)711s

C 54)666t 55)002t 61)600s 79)116A 112)618s

Rigid Fan [20] 49)35t 49)35t 52)78s 78)96A 98)71s

point Kim [18] 49)348t 49)348t 53)170s 78)959A 98)696s

support Present 49)348t 49)351t 52)667s 78)959A 98)711s

Note: Support models:
A*point support without rotational sti!ness; B*point support with rotational sti!ness; C*local distributed
support.
Mode shapes: (axes of symmetry parallel to the plate edges):
sSymmetric}symmetric
tSymmetric}asymmetric (asymmetric}symmetric).
AAsymmetric}asymmetric.



Figure 4. Mode shapes of a simply supported square plate with a rigid support at the centre point.

Figure 5. Highway bridges supported by columns.
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mode), with respect to axes parallel to the plate edges. These shapes are shown in
Figure 4 (fourth and "fth mode plates)

In the above discussion, symmetric and asymmetric mode shapes were with respect to the
axes of symmetry parallel to the plate edges. But, in a square plate, there are four axes of
symmetry: two are parallel to the plate edges and the other two are the diagonals. Figure
4 shows the mode shapes obtained for a plate with a rigid point support, and these modes
are also common to the other support models, though in a di!erent order. In Figure 4, the
"rst two mode shapes are symmetric}asymmetric with respect to the axes of symmetry
parallel to the plate edges. In the elastic support models, the rotational sti!ness will a!ect
these mode shapes, but axial sti!ness will not. The third mode shape is symmetric with
respect to all four axes of symmetry, and hence the axial sti!ness has some e!ect on it, but
not the rotational sti!ness. The fourth mode shape is asymmetric}asymmetric with respect
to the axes of symmetry parallel to the plate edges and symmetric}symmetric with respect to
the diagonals. The "fth mode shape is exactly the opposite of the fourth. For these two
mode shapes, with zero de#ection and slope at the centre, the axial and rotational sti!nesses
have no e!ect when point support models are used. But when a uniformly distributed
support model is used, both axial sti!ness and support area a!ect the frequencies and mode
shapes.

7. FREE VIBRATION OF A HIGHWAY BRIDGE

A plate supported by columns is a structural form used in highway bridges. In the present
work, two kinds of support forms are considered. In the "rst case, the bridge deck is
supported by two single columns as shown in Figure 5(a) and in the other case there are two
columns at each support location as shown in Figure 5(b). In both cases, the bridge deck
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(plate) and the supports (columns) are assumed to have the same properties (E"31 GPa,
k"0)25, o"2500 kg/m3 ). The dimensions of the structure are: B"8 m, ¸"3]20m,
bridge thickness h"0)3m, the height of columns is H"5m. Two column sections are
considered: 0)5]0)5 and 1)0]1)0 m2. In the numerical analysis, the bridges are divided into
eight "nite strips and 25 terms of the series are taken into account, to ensure convergence of
results. In this problem the rotational sti!ness of columns is not considered and only the
axial sti!ness is used. The sti!ness of the point and patch (distributed) support sti!ness are
calculated by k

f
"EA/H and k

f
"E/H respectively.

The numerical results are shown in Table 5. It can be seen from this table that when the
columns are modelled as point supports, the fundamental frequency is una!ected by
di!erent support forms (i.e., one or two columns at each support location) and sti!ness.
When the areas of the supports are taken into consideration, the fundamental frequencies
are signi"cantly a!ected by the column sti!ness. The reason for this is that the distributed
supports can restrict the deformation of plate in the supported areas and relatively restrict
the rotation (deformation). On the other hand, point supports are able to restrict only
Figure 6. De#ection distribution of the "rst mode shape along bridge span at the supports line (Figure 5(a)):
**, A"0)0; *d*, A"0)5]0)5; *e*, A"1)0]1)0.

TABLE 5

Natural frequency parameters of bridge deck on elastic point and patch supports

Frequency parameters
Support Column Total
cases section sti!ness j

1
j
2

j
3

Figure 5(a) Point 1)55]109 1)53538 1)78457 1)97127
Point 6)20]109 1)53538 1)78491 1)97372

0)5]0)5 1)55]109 1)64250 2)22460 3)83637
1)0]1)0 6)20]109 2)47137 4)64142 5)47462

Figure 5(b) Point 1)55]109 1)53538 1)97622 2)89580
Point 6)20]109 1)53538 1)97751 2)90086

0)5]0)5 1)55]109 1)73382 5)58618 6)40759
1)0]1)0 6)20]109 2)79143 5)78172 8)01763
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the transverse deformation at that point, while the rotational deformation is free.
Figure 6 shows the de#ection distributions of "rst mode shape along the support line for the
structure in Figure 5(a). It can be seen that there is a restriction in the de#ection. From these
results it is evident that for practical analysis, the concrete column support sti!ness is just
about the value of 109kN/m3 and for such a situation, the column supports cannot be
modelled as point support for treating free vibration.

8. CONCLUSIONS

A procedure using the "nite strip element method and a spring system has been proposed
to treat the free vibration of plates resting on intermediate elastic supports. The spring
system can be used to model point supports, line supports, locally distributed (patch)
supports and complex boundary conditions. A comparison of the present results with those
in the literature shows that this spring system can satisfactorily simulate the inner supports
and mixed complex boundary conditions. Numerical analysis shows that the support
sti!ness and distributed support area have signi"cant e!ects on the natural frequencies and
associated mode shapes.
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